Sabtu, 30 Mei 2009

Progressive Cavity Pump (PC Pump)

Sejarah Progressive Cavity Pump

Progressive Cavity Pump atau biasa disebut pompa PCP merupakan salah satu alat dari artificial lift untuk meningkatkan laju produksi dalam industri perminyakan. Sejarah PCP dimulai pada akhir tahun 1920-an dimana Seorang warga Perancis Rene Moineau mendesain rotary compresor dengan sistem mekanisme rotasi baru yang digunakan untuk penggunaan tekanan fluida yang bervariasi. Dia menamakan alatnya sebagai “Capsulism”. Di pertengahan tahun 1950-an, prinsip PCP diaplikasikan untuk aplikasi motor hidrolik yang berbanding terbalik dengan penggunaan PCP.

Kemudian pada tahun 1980-an, PC pump digunakan sebagai metode artificial lift, lebih dikenal sebagai pompa alternatif dari metode pengangkatan konvensional yang umumnya dipakai dalam industri perminyakan. Sekarang PC pump digunakan untuk pengangkatan fluida dengan kedalaman lebih dari 2000 meter. Alat ini menawarkan banyak keuntungan dibandingkan peralatan pengangkatan traditional. Tentunya, yang lebih penting adalah biaya produksi yang lebih rendah per barrelnya.

Elemen Utama & Desain PCP

Pompa ini memiliki 2 elemen utama yaitu rotor dan stator (Lihat gambar 3, dibawah). Rotor sebagai penggerak PCP, berbentuk batang spiral yang terbuat dari alloy steel atau stainless steel yang dibalut dengan chrome. Ada juga yang terbuat dari chrome seara keseluruhan. Biasanya memiliki panjang 1.5 – 14 meter dengan diameter ¾ – 1 inch. Sedangkan stator sebagai seal rotor (wadahnya) yang berbentuk spiral, terbuat dari steel tube diluarnya dan elastomer berbahan nitrile rubber atau viton rubber didalamnya (merupakan co-polymer acrylonitrile & butadine). Stator dengan desain khusus memiliki elastomer yang terbuat dari teflon. Biasanya memiliki panjang yang kurang lebih sama dengan rotor yaitu sekitar 1.5-14 meter namun dengan ukuran diameter yang lebih besar antara 2.5-4.5 inch.



Selengkapnya download di sini
Read More..

Well Completion

Well completion merupakan tahapan akhir dari proses pemboran sebuah sumur migas, setelah sumur tsb dinyatakan ekonomis dan layak produksi berdasarkan hasil-hasil logging, sampling dan well testing. Completion design dan technique merupakan dua hal yang berkaitan erat untuk menentukan jenis completion mana yang paling tepat berdasarkan karakteristik sebuah sumur migas, agar minyak dan atau gas bisa diproduksi secara optimum dengan cost minimum. Dalam menentukan completion design, biasanya drilling engineer akan bekerja sama dengan reservoir dan production engineer.

Jenis-jenis well completion adalah:

1. Open Hole Completion
Open Hole completion merupakan jenis well completion dimana pemasangan casing hanya diatas zona produktif sehingga formasi produktif dibiarkan tetap terbuka tanpa casing kebawahnya. Sehingga formasi produktif secara terbuka diproduksikan ke permukaan.

Keuntungan Open Hole Completion:
 Biaya murah dan sederahana
 Mudah bila ingin dilakukan Logging kembali
 Mudah untuk memperdalam sumur
 Tidak memerlukan biaya perforasi

Kerugian Open Hole Completion:
 Biaya perawatan mahal (perlu sand clean-up rutin)
 Sukar melakukan stimulasi pada zona yang berproduksi
 Tidak dapat melakukan seleksi zona produksi
 Batuan pada formasi harus Consolidated

Source: www.oil-gas.state.co.us

2. Cased Hole Completion

Cased Hole Completion merupakan jenis completion yang menggunakan casing secara keseluruhan hingga menutupi zona formasi produktif lalu dilakukan perforasi untuk memproduksikannya.

Keuntungan Cased Hole Completion:

 Bisa melakukan multiple completion
 Zona produktif antar lapisan tidak saling berkomunikasi sehingga memudahkan perhitungan flowrate tiap lapisan
 Lebih teliti dalam penentuan kedalaman subsurface equipment. Karena wireline logging dilakukan sebelum produksi.
 Sangat baik untuk diterapkan pada formasi produktif sandstone.


Selengkapnya download di sini!!!!
Read More..

Jumat, 29 Mei 2009

Chemical Flooding (Chemical Injection-EOR)

Chemical Flooding adalah suatu metode EOR dengan menginjeksikan cairan yang akan bereaksi secara kimiawi (chemical liquid) di dalam reservoir. Jenis-jenis Chemical yang diinjeksikan adalah:

a. Surfactant
Surfactant yang dipakai umumnya Commercial Petroleum Sulfonate, Sodium Dodecyl Sulfate. Tujuan digunakannya surfactant adalah menurunkan tegangan permukaan (interfacial tension) minyak-air di dalam reservoir. Dengan menurunnya tegangan permukaan, maka akan menurunkan tekanan kapiler yang berpengaruh terhadap wettabilitas batuan. Sehingga akan meningkatkan effisiensi pendesakan (Displacement efficiency).

Proses surfactant flooding:
 Preflush.
System pengkondisian reservoir. Biasanya diinjeksikan dalam volume sedikit dengan chemical surfactant.
 Surfactant slug

Ini merupakan tahap injeksi selanjutnya dengan memasukkan chemical surfactant dengan besaran 25-100% pore volume reservoir. Tujuannya untuk mendapatkan mobility ratio yang baik (M<1)>





Selengkapnya download di sini
Read More..

Faktor-Faktor yang Mempengaruhi Perencanaan Pengangkatan Serbuk Bor.

Faktor-faktor ini sangat penting dalam operasi pemboran khususnya dalam pengangkatan serbuk bor. Menurut Ziedler, 1988, karena kompleksnya mekanisme pengangkatan serbuk bor, terdapat banyak faktor-faktor yang mempengaruhi pengangkatan serbuk bor oleh lumpur pemboran. Faktor-faktor tersebut terbagi dalam empat kategori, yaitu:
 Kecepatan lumpur di annulus
 Sifat fisik lumpur
 Sifat fisik serbuk bor
 Faktor mekanis

1. Kecepatan Lumpur di Annulus.

Lumpur pemboran yang digunakan untuk mengangkat serbuk bor, disirkulasikan dengan kekuatan pompa, dengan mengatur pompa kita dapat mengubah-ubah laju alir lumpurnya. Lumpur yang mengalir di annulus mempunyai kecepatan. Kecepatan lumpur dan ukuran annulus juga berpengaruh pada viscositas effektif, semakin tinggi kecepatan lumpur dan semakin sempit ukuran annulusnya, maka semakin kecil viscositas effektifnya, sehingga akan semakin memperbesar kecepatan slipnya.

1.1. Pola Aliran di Annulus

Menurut Millpark, 1991, pola aliran fluida ada dua yaitu laminer dan turbulen. Pada aliran laminer aliran fluida bergerak pada laju yang lambat, teratur dan geraknya sejajar dengan dinding pipa.

Pada aliran turbulen, fluida bergerak dengan kecepatan yang lebih besar dari aliran laminer dan partikel-partikel fluida bergerak pada garis-garis yang tidak teratur sehingga terdapat aliran berputar atau yang disebut juga dengan pusaran Eddie, dan arah gerakan yang terjadi sangat tidak teratur.

1.2. Bilangan Reynold (Reynold Number = Re)

Untuk menentukan pola aliran tersebut laminer atau turbulen, digunakan bilangan Reynold (re). Dari percobaan pada fluida Newtonian, diketahui bahwa untuk Re >3000 adalah turbulen, dan Re = 928  V D / ยต


Selengkapnya download di sini
Read More..

Wireline Logging

Pada saat ini harga minyak sedang membumbung tinggi, dan sempat menembus angka $130 yang merupakan harga tertinggi dalam sejarah industri perminyakan. Negara-negara pengekspor minyak menikmati windfall profit yang tidak sedikit, termasuk negara-negara yang tergabung dalam OPEC (kecuali Indonesia?). Demikian halnya dengan perusahaan-perusahaan minyak, dimana kondisi harga minyak yang tinggi ini membuat Exxon Mobil mampu muncul sebagai perusahaan yang menghasilkan akumulasi profit tertinggi (2000-2004) sebesar $88.1 milyar melampaui General Electric ($74.2 milyar).

Cadangan minyak dunia terus menurun, dikarenakan temuan sumber-sumber minyak baru tidak seimbang dengan kebutuhan energi yang ada. Negara adidaya seperti Amerika Serikat membutuhkan bahan bakar minyak sekitar 21 juta barrel per hari, ini lebih dari dua puluh kali lipat produksi minyak Indonesia sekarang, dan 60% kebutuhannya harus diimport dari luar Amerika. Ditambah lagi dengan China yang didorong oleh kemajuan ekonominya merubah negara ini semakin ‘rakus’ akan energi, serta India yang juga sedang mengalami kemajuan ekonomi yang pesat.

Kondisi politik dibeberapa negara penghasil minyak juga merupakan faktor pendorong naiknya harga minyak. Gejolak di Irak yang tidak kunjung reda ditambah dengan pertikaian antara Turki dengan orang-rang Kurdish di bagian barat-utara Irak , kondisi politik di Venezuela, masalah nuklir di Iran dan sengketa antar suku serta kegiatan bersenjata oleh para pemuda liar (area boys) didaerah penghasil minyak di Nigeria, memberikan kontribusi terhadap tingginya harga minyak saat ini.

Lalu darimana sumber energi lainnya akan didapatkan? Berbicara tentang hidrogen sebagai sumber energi yang terbarukan masih membutuhkan waktu yang panjang. Sekitar dua puluh tahun lagi menurut prediksi para ahli, hidrogen dapat menjadi sumber energi yang ekonomis setelah masalah-masalah teknis dasar mulai dari cara penyimpanannya hingga aspek keselamatan pemakaian energi hidrogen dapat teratasi. Jadi posisi minyak sebagai sumber energi utama masih belum dapat disingkirkan, yang diikuti oleh batu bara dan gas alam sebagai sumber energi.

Awal Mula Evaluasi Formasi

Kapan sebenarnya sumur minyak mulai digali? Dari catatan yang ada disebutkan bahwa di China (sekitar tahun 347 SM) sumur minyak digali sampai ke dalaman 800 kaki dengan menggunakan bambu yang ujungnya dipasang mata bor. Marco Polo ketika dalam perjalanannya tahun 1264 mencatat bahwa orang di Baku, Azerbaijan telah menggunakan minyak dari dalam tanah sebagai penerangan ketika orang di Eropa masih menggunakan minyak dari ikan paus.


Selengkapnya download di sini
Read More..

Rabu, 27 Mei 2009

Teknik Gas Alam

HUKUM-HUKUM GAS


Hukum gas berkenaan dengan hubungan antara volume terhadap tekanan, temperatur, molar dan tetapan yang dipengaruhi oleh faktor tekanan dan temperatur.
V ~ P, T, n, K (P, T)

dimana :

V = volume gas
P = tekan gas
T = Temperatur gas
n = molar
K(P,T) = tetapan

Sifat-sifat fisik gas sangat dipengaruhi oleh faktor :

1. Tekanan
2. Gaya tarik menarik antara molekul
3. Sifat antara molekul yang cenderung untuk saling membatasi
4. Gaya tolak-menolak yang merupakan medan listrik dari masing-masing molekul.
5. Energi kinetis (tergantung pada temperatur).
Beberapa hukum gas yang telah dibuat berdasarkan hasil-hasil eksperimen
yaitu : hukum Boyle, hukum Charles, hukum Dalton dan hukum Amagat.

1. Hukum Boyle menyatakan bahwa nilai volume gas pada kondisi suhu yang tetap adalah berbanding terbalik dengan tekanan.

atau :
PV = tetapan
2. Hukum Charles yang menyatakan bahwa nilai volume gas pada kondisi tekanan yang tetap adalah berbanding lurus dengan suhu.
V = tetapan x T
atau :
tetapan
3. Hukum Dalton yang menyatakan bahwa tekanan gas pada keadaan dimana volumenya berupa campuran beberapa kompon, nilainya adalah total dari tekanan masing-masing komponen gas campuran tersebut.
P =
dimana :
Pi = tekanan komponen msing-masing gas
4. Hukum Amagat yang menyatakan bahwa volume total gas pada keadaan gas campuran dengan P dan T campuran adalah sebesar jumlah dari volume masing-masing gas campuran tersebut.


Selengkapnya download di sini
Read More..

Sabtu, 23 Mei 2009

Metode Geolistrik

1. PENDAHULUAN

Metoda ini lebih efektif jika digunakan untuk eksplorasi yang sifatnya dangkal, jarang memberikan informasi lapisan di kedalaman lebih dari 1000 feet atau 1500 feet. Oleh karena itu metoda ini jarang digunakan untuk eksplorasi minyak tetapi lebih banyak digunakan dalam bidang engineering geology seperti penentuan kedalaman batuan dasar, pencarian reservoir air, juga digunakan dalam eksplorasi geothermal. Tetapi walaupun begitu pada akhir-akhir ini metoda ini digunakan dalam eksplorasi minyak bumi antara lain di Rusia, Canada dan Indonesia. Metoda geolistrik juga cocok digunakan monitoring gerakan air garam Fried (1975). White (1988) melakukan monitoring arah dan kecepatan aliran ground water dengan metoda resistivitas menggunakan konfigurasi Schlumberger dan Wenner. Berdasarkan identifikasi variasi risistivitas listriknya, maka metoda geolistrik tahanan jenis diperkirakan dapat dimanfaatkan untuk mendeteksi rembesan dan pencemaaran polutan yang disebabkan oleh kebocoran oli di bawah permukaan tanah.

Metoda tahanan jenis adalah salah satu metoda dari kelompok metoda geolistrik yang digunakan untuk mempelajari keadaan bawah permukaan dengan cara mempelajari sifat aliran listrik dalam batuan dibawah permukaan bumi. Yang dipelajari disini mencakup besaran medan potensial , medan elektromagnetik yang diakibatkan oleh aliran arus listrik secara alamiah (pasif) maupun secara buatan (aktif). Beberapa metoda yang termasuk didalam kelompok ini adalah :

• Tahanan jenis
• Tahanan jenis head on
• Potensial diri
• Polarisasi terimbas
• EM VLF
• Magnetoeluric
• Arus Telurik
• Elektromagnetik

Berdasarkan letak (konfigurasi) elektroda-elektroda potensial dan elektroda-elektroda arus, dikenal beberapa jenis konfigurasi untuk resistivitas tahanan jenis, antara lain :

1. Konfigurasi Schlumberger
2. Konfigurasi Wenner
3. Konfigurasi Dipole-dipole
4. Konfigurasi Pole-pole
5. Konfigurasi Mise ala mase


Selengkapnya download di sini

Read More..

Metode Geofisika (2)

Geofisika berasal dari kata geo, yang artinya bumi, dan fisika. Dari akar keilmuannya sendiri, geo berasal dari kata geologi. Jadi, geofisika ialah ilmu yang menerapkan prinsip-prinsip fisika untuk mengetahui dan memecahkan masalah yang berhubungan dengan bumi, atau dapat pula diartikan mempelajari bumi dengan menggunakan prinsip-prinsip fisika. Karena perkembangannya yang sangat cepat, batas yang jelas antara geologi, fisika, dan geofisika menjadi semakin kabur. Sebagian orang menganggap geofisika sebagai bagian dari geologi, sementara yang lain menganggapnya sebagai bagian dari ilmu fisika.

Secara klasik urutan penyelidikan geofisika untuk eksplorasi di suatu daerah adalah magnetik, gaya berat, seismik bias dan pantul. Dalam pelaksanaannya urutan penyelidikan demikian sering tidak diikuti, hal itu terdorong oleh beberapa hal diantaranya keterbatasan biaya dan adanya keinginan untuk memperoleh data secepat-cepatnya.
Penelitian geofisika umum bermanfaat untuk mendapatkan gambaran geologi, bisa dalam arti yang luas ataupun dalam arti yang khusus.

Data yang dihasilkan bermanfaat bagi pemeta geologi, geoteknik, dan hidrogeologi.
Dalam arti yang luas berarti masih bersifat umum dan biasanya untuk daerah yang luas, misalnya untuk membedakan batuan sedimen berikut struktur regionalnya. Data demikian bisa didapat dengan metoda seismik atau gaya berat umum. Data khusus misalnya untuk mengetahui penyebaran lapisan batubara tertentu, bisa dibantu untuk mendapatkan indikasinya mempergunakan gaya magnet di tanah, tahanan listrik, seismik pantul.

1. Metoda Gaya Berat (Gravitasi)

Metoda ini untuk mengukur adanya perbedaan kecil medan gaya berat batuan. Perbedaan ini disebabkan karena adanya distribusi massa yang tidak merata di kerak bumi sehingga menimbulkan tidak meratanya distribusi massa jenis batuan.


Selengkapnya download di sini

Read More..

10.Sistem Peralatan Pemboran Lepas Pantai (offshore drilling).

1. TEORI DASAR

Sistem peralatan pemboran lepas pantai pada prinsipnya adalah merupakan perkembangan dari sistem peralatan pemboran darat, maka metode operasi lepas pantai membutuhkan teknologi yang baru dan biaya operasi yang mahal, karena kondisi lingkungan laut berbeda dengan kondisi lingkungan darat.

Peralatan mutlak yang harus ada dalam operasi pemboran lepas pantai adalah sebuah strutur anjungan (platform) sebagai tempat untuk meletakkan peralatan pemboran dan produksi. Berbagai macam anjungan telah dibuat, seperti anjungan permanen (fixed) yang terdiri diatas kaki-kaki beton bertulang. Jenis ini umumnya digunakan pada laut dangkal dan pada lapangan pengembangan sehingga dapat sekaligus menjadi anjungan pemboran dan produksi.

Berbagai hambatan alam yang harus diatasi bagi pengoperasian unit lepas pantai. Hambatan tersebut antara lain : angin, ombak, arus dan badai. Khusus untuk unit terapung yang amat peka terhadap pengaruh kondisi laut, maka menciptakan peralatan khusus, yaitu peralatan peredam gerak oscilsi vertikal akibat ombak dan peralatan pengendalian posisi pada unit terapung. Untuk pengendalian posisi pada unit terapung dikenal dengan mooring system dan sistem pengendalian posisi dinamik . Sedangkan untuk mengatasi gerak vertikal keatas dan kebawah umumnya digunakan Drill String Compensator (DSC).

Operasi pemboran lepas pantai dimulai dari pengembangan teknologi pemboran darat dengan menggunakan casing conduktor yang ditanam atau dibor dan disemen, kemudian meningkat dengan digunakan mud-line suspention system, dan terus meningkat dengan menggunakan riser system. Penggunaan BOP konventional terus dimodifikasi agar mampu beroperasi di bawah air. Kondisi lingkungan laut berpengaruh terhadap pemilihan jenis platform.



2. PERALATAN PEMBORAN LEPAS PANTAI

2.1. ANJUNGAN

Jenis platform secara umum dapat diklasifikasikan menjadi dua kelompok, yaitu Fixed platform dan Mobile platform.


Selengkapnya download di sini
Read More..

9.Sistem Peralatan Penunjang

1. TEORI DASAR

Fishing job adalah pekerjaan dalam teknik pemboran yang mana pekerjaan ini berhubungan dengan pengambilan kembali alat-alat / potongan-potongan alat ke permukaan. Alat yang jatuh harus secepatnya diambil karena semakin lama semakin sulit diambil karena tertutup cutting atau mud cake dan lainnya. Kerugian dalam pekerjaan ini adalah rig timernya semakin panjang dan ini tentunya akan menambah biaya pemboran.

Kejadian ini tidak jarang terjadi pada operasi pemboran karenanya harus selalu hati-hati dan selalu mengontrol peralatan misalnya bit yang sudah tumpul harus segera diganti dan juga WOB yang tidak terlalu besar yang mengakibatkan drill string patah. Apabila alat ini tidak dapat diambil maka harus diadakan pemboran side tracking dan lubang tidak dapat diteruskan lagi.
Sistem peralatan penunjang lainnya yang penting adalah Kunci-kunci, Casing hanger, serta Fishing tools (alat-alat pemancing)

1.1. KUNCI-KUNCI
Peralatan-peralatan yang termasuk dalam kategori ini, antara lain adalah sebagai berikut :
1. Kunci Wilson (Make Up and Break Out Tongs)
Digunakan pada waktu menyambung/melepas sambungan rangkaian pipa bor, digantung pada menara bor dan bekerja secara mekanis.
2. Power Tongs
Fungsinya sama dengan kunci Wilson, tetapi bekerja secara hidrolis atau elektris.
3. Kunci-kunci dan rantai.
4. Tali henep
Merupakan tali yang digunakan untuk memperkeras/melepas sambungan rangkaian pipa bor. Tali henep ini dililitkan pada cathead.

1.2. CASING HANGER

Bagian casing yang terletak pada ujung atas berfungsi untuk menggantungkan seluruh rangkaian casing yang berada dalam lubang bor, disamping itu juga berfungsi untuk fondasi dari BOP stack.

1.3. FISHING TOOLS

a. Operasi Pemancingan

Operasi pemancingan adalah operasi untuk mengambil benda-benda yang tidak diinginkan dari lubang bor, termasuk potonga-potongan logam kecil, peralatan atau rangkaian bagian pipa bor.


Selengkapnya download di sini
Read More..

8.Peralatan Penyemenan

Proses penyemenan terdiri dari pencampuran air dengan semen dalam perbandingan tertentu dan dengan additive tertentu pula. Pendorongan semen dapat dilakukan dengan sistem sirkulasi ke belakang casing, ditekan masuk ke formasi atau ditempatkan sebagai suatu plug atau sumbat pada lubang yang tidak merupakan perforasi completion (misalnya disini open hole completion).

Peralatan penyemenan pada dasarnya dibagi menjadi dua bagian, yaitu peralatan di atas permukaan (surface equipment), dan peralatan bawah permukaan.

1. PERALATAN DI ATAS PERMUKAAN

Peralatan penyemenan terdapat di atas permukaan meliputi Cementing unit, Flow line, dan Cementing head.

A. Cementing Unit

Cementing unit adalah merupakan suatu unit pompa yang mempunyai fungsi untuk memompakan bubur semen (slurry) dan lumpur pendorong dalam proses penyemenan.
Cementing Unit terdiri dari :

• Tanki Semen
Untuk menyimpan semen kering.
• Hopper
Untuk mengatur aliran dari semen kering agar merata.
• Jet Mixer
Mixer yang umum digunakan sekarang ini adalah jet mixer dimana dipertemukan dua aliran yaitu bubur semen dan air yang ditentukan melalui venturi agar dapat mengalir dengan deras dan dapat menghasilkan turbulensi, yang dapat menghasilkan pencampuran yang baik dan benar-benar homogen. Densitas slurry dapat diukur dengan mud balance
• Motor penggerak pompa dan pompa semen
berfungsi untuk memompa bubur semen.

Jenis-jenis sementing unit :

1. Truck mounted cementing unit
2. Marine cementing unit
3. Skit mounted cementing unit
Mengontrol rate dan tekanan, jenis pompa dapat berupa duplex double acting piston pump dan single acting triplex plunger pump. Plunger pump lebih umum dipakai karena slurry dapat dikeluarkan dengan rate yang lebih uniform dan tekanannya lebih besar.


Selengkapnya download di sini
Read More..

Kamis, 21 Mei 2009

7. Sistem Penyemenan (Cementing System) II

1. TEORI DASAR

Penyemenan suatu sumur merupakan salah satu faktor yang tidak kalah pentingnya dalam suatu operasi pemboran. Berhasil atau tidaknya suatu pemboran, salah satu diantaranya adalah tergantung dari berhasil atau tidaknya penyemenan sumur tersebut.
Penyemenan sumur secara integral, merupakan salah satu aspek yang sangat penting dalam suatu operasi pemboran, baik sumur minyak maupun gas. Semen ter-sebut digunakan untuk melekatkan rangkaian pipa selubung dan mengisolasi zona produksi serta mengantisipasi adanya berbagai masalah pemboran.

Perencanaan penyemenan meliputi :

• Perkiraan kondisi sumur (ukuran, tem-peratur, tekanan, dsb.)
• Penilaian terhadap sifat lumpur pem-boran
• Pembuatan suspensi semen (slurry de-sign)
• Teknik penempatan
• Pemilihan peralatan, seperti centralizers, scratchers, dan float equipment

Program perencanaan penyemenan secara tepat, merupakan hal pokok yang akan mendukung suksesnya operasi pemboran.

Pada dasarnya operasi penyemenan bertujuan untuk :

1. Melekatkan pipa selubung pada dinding lubang sumur,
2. Melindungi pipa selubung dari masalah-masalah mekanis sewaktu operasi pem-boran (seperti getaran),
3. Melindungi pipa selubung dari fluida formasi yang bersifat korosi, dan
4. Memisahkan zona yang satu terhadap zona yang lain dibelakang pipa selu-bung.

1.1 KOMPONEN, KOMPOSISI DAN KARAKTERISTIK SEMEN

Komponen utama semen Portland diperlihatkan oleh Tabel 1. Dari tabel tersebut dapat dilihat bahwa C3S dan C2S merupakan komponen utama. C3S memiliki laju hidrasi yang paling tinggi dan berpengaruh pada sifat ketahanan semen secara keseluruhan. C2S merupakan komponen yang tidak begitu reaktif dan berpengaruh pada peningkatan kekuatan semen secara bertahap. C3A berpengaruh pada pengerasan awal karena sifat hidrasinya yang cepat. C4AF hampir sama dengan C3A akan tetapi sangat tergantung pada temperatur dan persentase additif.


Selengkapnya download di sini
Read More..

6.Sistem Penyemenan ( Cementing System ) I

1. PENDAHULUAN

Penyemenan suatu sumur merupakan salah satu faktor yang tidak kalah pentingnya dalam suatu operasi pemboran. Berhasil atau tidaknya suatu pemboran, salah satu diantaranya adalah tergantung dari berhasil tidaknya penyemenan sumur tersebut. Peralatan penyemenan pada dasarnya dapat dibagi menjadi dua bagian yaitu :

(1). Peralatan di atas permukaan ( Surface Equipment )
(2). Peralatan di bawah permukaan ( Sub-surface Equipment )

2. PERALATAN DI ATAS PERMUKAAN

Peralatan penyemenan di atas permukaan meliputi :

a. Cementing Unit

Adalah merupakan suatu unit pompa yang mempunyai fungsi untuk memompakan bubur semen (slurry) dan lumpur pendorong dalam proses penyemenan.

Cementing unit terdiri dari :

- Tanki semen
Untuk menyimpan semen kering.
- Hopper
Untuk mengatur aliran dari semen kering agar merata.
- Jet mixer
Untuk mengatur semen kering dan air yang ditempatkan bersama-sama dalam hopper, sehingga akan menghasilkan bubur semen yang benar-benar homogen.
- Motor penggerak pompa dan pompa
Berfungsi untuk memompa bubur semen.
Jenis-jenis cementing unit :
1. Truck mounted cementing unit
2. Marine cementing unit


Selengkapnya download di sini
Read More..

5. Sistem Pencegahan Semburan Liar ( Blowout Preventer System )

1. PENDAHULUAN

Fungsi utama dari sistem pencegahan semburan liar (BOP System) adalah untuk menutup lubang bor ketika terjadi “kick”. Blowout terjadi karena masuknya aliran fluida formasi yang tak terkendalikan ke permukaan. Blowout biasanya diawali dengan adanya “kick” yang merupakan suatu intrusi fluida formasi bertekanan tinggi kedalam lubang bor. Intrusi ini dapat berkembang menjadi blowout bila tidak segera diatasi.
Rangkaian peralatan sistem pencegahan semburan liar (BOP System) terdiri dari dua sub komponen utama yaitu Rangkaian BOP Stack, Accumulator dan Sistem Penunjang.

1. Rangkaian BOP Stack.

Rangkaian BOP Stack ditempatkan pada kepala casing atau kepala sumur langsung dibawah rotary table pada lantai bor.

Rangkaian BOP Stack terdiri dari peralatan sebagai berikut :

• Annular Preventer.
Ditempat paling atas dari susunan BOP Stack. Annular preventer berisi rubber packing element yang dapat menutup lubang annulus baik lubang dalam keadaan kosong ataupun ada rangkaian pipa bor.
• Ram Preventer.
Ram preventer hanya dapat menutup lubang annulus untuk ukuran pipa tertentu, atau pada keadaan tidak ada pipa bor dalam lubang.

Jenis ram preventer yang biasanya digunakan antara lain adalah :

1. Pipe ram
Pipe ram digunakan untuk menutup lubang bor pada waktu rangkaian pipa borberada pada lubang bor.
2. Blind or Blank Rams
Peralatan tersebut digunakan untuk menutup lubang bor pada waktu rangkaian pipa bor tidak berada pada lubang bor.
3. Shear Rams
Shear rams digunakan untuk memotong drill pipe dan seal sehingga lubang bor kosong ( open hole ), digunakan terutama pada offshore floating rigs.
• Drilling Spools.
Drilling spolls adalah terletak diantara preventer. Drilling spools berfungsi sebagai tempat pemasangan choke line ( yang mengsirkulasikan “kick” keluar dari lubang bor ) dan kill line ( yang memompakan lumpur berat ). Ram preventer pada sisa-sisanya mempunyai “cutlets” yang digunakan untuk maksud yang sama.
• Casing Head ( Well Head ).
Merupakan alat tambahan pada bagian atas casing yang berfungsi sebagai fondasi BOP Stack.


Selengkapnya download di sini

Read More..

4.Sistem Sirkulasi (Circulating System)

1. TEORI DASAR

Tujuan utama dari sistem sirkulasi pada suatu operasi pemboran adalah untuk mensirkulasikan fluida pemboran (lumpur bor) ke seluruh sistem pemboran, sehingga lumpur bor mampu mengoptimalkan fungsinya.

Sistem sirkulasi pada dasarnya terdiri dari empat komponen, yaitu :
1. Fluida pemboran (lumpur bor),
2. Tempat persiapkan ,
3. Peralatan sirkulasi, dan
4. Conditioning area.

2. LUMPUR PEMBORAN (DRILLING FLUID, MUD)

Fluida pemboran merupakan suatu campuran cairan dari beberapa komponen yang dapat terdiri dari : air (tawar atau asin), minyak, tanah liat (clay), bahan-bahan kimia, gas, udara, busa maupun detergent. Di lapangan fluida dikenal sebagai "lumpur" (mud).

Lumpur pemboran merupakan faktor yang penting serta sangat menentukan dalam mendukung kesuksesan suatu operasi pemboran. Kecepatan pemboran, efisiensi, keselamatan dan biaya pemboran sangat tergantung pada kinerja lumpur pemboran.

Fungsi lumpur dalam suatu operasi pemboran antara lain adalah sebagai berikut :

1. Mengangkat cutting ke permukaan.
2. Mendinginkan dan melumasi bit dan drill string.
3. Memberi dinding lubang bor dengan mud cake.
4. Mengontrol tekanan formasi.
5. Membawa cutting dan material-material pemberat pada suspensi bila sirkulasi lumpur dihentikan sementara.
6. Melepaskan pasir dan cutting dipermukaan.
7. Menahan sebagian berat drill pipe dan cutting (bouyancy efect).
8. Mengurangi effek negatif pada formasi.
9. Mendapatkan informasi (mud log, sampel log).
10. Media logging.

2.1. Komposisi lumpur pemboran.

Komposisi lumpur pemboran ditentukan oleh kondisi lubang bor dan jenis formasi yang ditembus oleh mata bor.

Ada dua hal penting dalam penentuan komposisi lumpur pemboran, yaitu :
• Semakin ringan dan encer suatu lumpur pemboran, semakin besar laju penembusannya.
• Semakin berat dan kental suatu lumpur pemboran, semakin mudah untuk mengontrol kondisi dibawah permukaan separti masuknnya fluida formasi bertekanan tinggi (dikenal sebagai "kick"). Bila keadaan ini tidak dapat diatasi maka akan menyebabkan semburan liar (blowout).


Selengkapnya download di sini
Read More..

2.Sistem Pengangkatan (Hoisting System)

1. TEORI DASAR

Sistem pengangkatan dalam pemboran memegang peranan yang sangat penting, mengingat bahwa sistem pengangkatan ini adalah sistem yang mendapat beban, baik beban vertikal maupun horizontal.

Beban vertikal yang dialami berasal dari beban menara itu sendiri, beban drill string, casing string, tegangan dari fast line, beban karena tegangan deadline serta beban dari blok-blok. Sedangkan beban horizontal berasal dari tiupan angin yang mana hal ini sangat terasa mempengaruhi beban sistem pengangkatan pada pemboran di lepas pantai (off shore).

Sistem pengangkatan terdiri dari dua sub komponen, yaitu:

1. Struktur penyangga (supporting structure)
2. Peralatan pengangkatan (hoisting equipment)

2. STRUKTUR PENYANGGA

Struktur penyangga (rig), adalah suatu kerangka sebagai platform yang berfungsi sebagai penyangga peralatan pemboran. Kerangka ini diletakkan di atas titik bor. Fungsi utamanya untuk trip, serta untuk menahan beban yang terjadi akibat peralatan bor itu sendiri maupun beban dari luar.

Stuktur penyangga terdiri dari :

• Substructure,
• Lantai bor (rig floor), dan
• Menara pemboran (drilling tower).

Untuk menara pemboran, ada dua tipe menara :

• Type standart (derrick), dan
• Type portable (Mast).

Secara ringkas, spesifikasi menara dapat dilihat pada tabel 1.


Selengkapnya download di sini
Read More..

1. Sistem Tenaga (Power Sytem)

1. DASAR TEORI

Sistem tenaga dalam suatu operasi pemboran terdiri dari dua subkomponen utama, yaitu :

1. Power suplay equipment

Tenaga yang dibutuhkan pada suatu operasi pemboran dihasilkan oleh mesin-mesin besar, yang dikenal dengan "prime mover" (penggerak utama). Tenaga yang dihasilkan tersebut digunakan untuk keperluan-keperluan sebagai berikut :
• sirkulasi lumpur,
• hoisting, dan
• rotary drill string.

2. Distribution (transmission) equipment

Berfungsi untuk meneruskan atau menyalurkan tenaga dari penggerak utama, yang diperlukan untuk suatu operasi pemboran. Sistem distribusi (transmisi) yang biasa digunakan ada dua macam, yaitu sistem transmisi mekanis dan sistem transmisi listrik (electric). Rig tidak akan berfungsi dengan baik bila distribusi tenaga yang diperoleh tidak mencukupi. Oleh sebab itu diusahakan tenaga yang hilang karena adanya transmisi atau distribusi tersebut dikurangi sekecil mungkin, sehingga kerja mesin akan lebih efisien.

Sistem tenaga yang dipasang pada suatu unit operasi pemboran secara prinsip harus mampu memenuhi keperluan-keperluan sebagai berikut :

• fungsi angkat,
• fungsi rotasi,
• fungsi pemompaan, dan
• fungsi penerangan.



a. Menghitung keperluan tenaga untuk fungsi angkat

Tenaga dari fungsi angkat dari motor melalui transmisi, drawwork, drilling cable dan sistem takel yang terdiri dari crown block dan travelling block diteruskan ke rangkaian pipa bor.

Maka, rendemen total antara motor dan hook :

• Conventiser : 0,7 - 0,8
• Transmisi : 0,88
• Drawwork : 0,90
• Takel : 0,87 untuk 8 kabel dan 0,85 untuk 10 kabel

sehingga, rendemen total untuk 10 kabel adalah

0,75 x 0,88 x 0,90 x 0,85 = 0,505

Tenaga untuk fungsi pengangkatan harus mampu untuk melayani pemboran sampai kedalaman limit pada kondisi ekonomis.


Selengkapnya download di sini
Read More..

3.Sistem Pemutar (Rotating System)

SISTEM PEMUTAR (ROTATING SISTEM)

1. TEORI DASAR

Fungsi utama sistem pemutar adalah untuk memutar rangkaian pipa bor dan memberikan beban (beratan) pada bagian atas dari pahat selama operasi pemboran berkangsung. Selain itu peralatan putar juga berfungsi untuk menggantungkan rangkaian pipa bor yaitu dengan slip yang dipasang (dimasukkan) pada rotary table ketika disambung atau melepas bagian-bagian drill pipe.

Sistem pemutar ini terdiri dari tiga sub komponen utama, yaitu :
1. Peralatan putar (rotary assembly)
2. Rangkaian pipa bor
3. Mata bor atau pahat (bit)

2. PERALATAN PUTAR

Peralatan putar ditempatkan pada lantai bor di bawah crown block dan diatas lubang. Peralatan putar terdiri dari Meja putar, Master bushing, Kelly bushing, dan Rotary Slip.

a. Meja putar

Meja putar (rotary table) berfungsi untuk :

• Meneruskan gaya putar dari drawwork ke rangkaian pipa bor melalui kelly bushing dan kelly.
• Menahan pipa bor dalam lubang pada saat penyambungan atau pelepasan pipa bor dilakukan.
Tenaga dari prime mover disalurkan ke rotary table dengan dua cara, yaitu :
• Dengan menggunakan rantai melalui drawwork.
• Langsung dari prime mover dengan belt.

b. Master bushing

Master bushing merupakan bagian dari rotary table yang berfungsi sebagai kedudukan kelly bushing atau rotary slip.

c. Kelly bushing

Kelly bushing berfungsi untuk meneruskan tenaga putardari rotary table ke rangkaian pipa bor selama operasi pemboran berlangsung.

d. Rotary Slip

Rotary slip akan berfungsi sebagai penggantung rangkaian pipa bor pada saat dilakukan penyambungan ataupun pelepasan bagian rangkaian pipa bor. Pemasangannya dilakukan dengan cara memasukkannya ke dalam master bushing.


Selengkapnya download di sini
Read More..

Senin, 18 Mei 2009

Akumulasi Minyak dan Gas Bumi

AKUMULASI MINYAK DAN GAS BUMI

Seperti telah kita ketahui bersama bahwa minyak dan gas bumi berakumulasi pada suatu perangkap yang merupkan bagian tertinggi dari lapisan reservoir. Akan tetapi apakah yang menyebabkan minyak dan gas bumi berhenti disana? Ada 2 teori yang menjelaskan pertanyaan itu adalah sebagai berikut :

1.1 TEORI AKUMULASI GUSSOW

Dalam keadaan hidrostatik, akumulasi dapat diterangkan oleh teori Gussow (1951). Gumpalan atas tetes-tetes minyak dan gas akan bergerak sepanjang bagian atas lapisan penyalur keatas, terutama disebabkan pelampungan (buoyancy). Begitu sampai di sustu perangkap (dalam hal ini perangkap struktur), minyak dan gas akan menambah kolom gas dan mendesak minyak kebawah yang juga bertambah tinggi kolomnya dan gilirannya mendesak air ke bawah. Hal ini akan terus terjadi sampai batas minyak – air mencapai ‘Spill point’. Penambahan minyak – dan gas terus menerus akan menyebabkan perlimpahan (Spilling) minyak keatas ke struktur selanjutnya (fasa dua). Pada fasa berikutnya, berhubungan penambahan gas, maka seluruh minyak didesak gas kebawah sehingga melimpah sampai habis dan perangkap diisi sepenuhnya oleh gas.

Stadium 1 : Gas, minyak dan air diatas titik limpah, minyak dan gas kedua-duanya terus menerus terjebak sedangkan air disingkirkan. Stadium ini berhenti jika antara muka minyak-air mencapai titik limpah.

Stadium 2 : Stadium penyebaran selektif dan pengasiran gas. Gas terus dijebak, selagi minyak melimpah keatas kemiringan. Stadium ini berakhir jika antara muka minyak-gas mencapai titk limpah dan berhimpitan dengan antar muka minyak.

Stadium 3 : Stadium Akhir. Perangkap diisi oleh gas. Gas melimpah ketas selagi lebih banyak gas yang masuk perangkap. Minyak melewati perangkap dan meneruskan perjalannya ke atas kemiringan.

Gambar 1 : Differensiasi minyak dan gas dalam perangkap yang menyebabkan minyak melimpah. (Gussow, 1951)

Pada gambar II, terlihat bagaimana mekanisme ini menyebabkan penyebaran akumulasi minyak dan gas pada sejumlah perangkap yang berderetan dan pada ketinggian strukturil yang berbeda. Terisinya suatu perangkap oleh gas, minyak dan sebagainya tergantung dari arah migrasi, dan jumlah minyak dan gas yang bermigrasi.
Yang pertama ini dibandingkan sebagai E, D, dan C. Sedangkan untuk yang kedua diilustrasikan oleh A, B dan C.
Terlihat pada gambar bahwa tergantung dari arah batuan induk, maka yang paling dekat akan terisi oleh gas, sedangkan yang paling jauh diisi oleh air.
Perangkap I Diisi sampai titik limpah dan mempunyai tudung gas. Hanya minyak melimpah keatas ke
Perangkap II.
Perangkap III dan IV penuh dengan air asin dan mengandung minyak atau gas.

Perangkap I seluruhnya diisi dengan gas, seluruh minyaknya telah terusir masuk keperangkap II. Minyak sekarang melebihi perangkap I.
Perangkap II telah diisi minyak dan melimpahkan keatas kemiringan ke dalam perangkap III, yang masih belum mengandung tudung gas.
Perangkap III mengandung hanya sedikit miinyak, sedangkan perangkap IV masih terisi air asin.

Perangkap I tak berubah dengan gas melimpah keatas kemiringan ke dalam perangkap II, Minyak melewati perangkap I. Perangkap II sekarang mempunyai tudung gas dan melimpahkannya ke atas kemiringan ke dalam perangkap III. Perangkap III sekarang telah terisi dengan minyak tetapi masih tetap belum mempunyai tudung gas dan melimpahkan minyak kedalam perangkap III. Perangkap IV masih terisi air asin.



Migrasi sama seperti untuk C, tetapi dalam keadaan hubungan struktur yang lain. Perhatikan bahwa ketinggian kulminasi tidak mempunyai efek terhadap penjebakan selektif, ketinggian titik limpah adalah yang mengendalikan. Ketinggian kulminasi diatas titik limpah menentukan kalau minyak maximum.

Migrasi sama seperti untuk C. Disini semua kaulminasi berada pada ketinggian yang sama. Titik limpah mengendalikan penjebakan differensial.

Gambar II. Penyebaran minyak dan gas pada deretan struktur karena penjebakan pemisahan differensial (Menurut Gussow, 1951)

1..2 TEORI AKUMULASI KING HUBBERT (1953)
King Hubbert (1953) meninjau prinsip akumulasi minyak bumi dari segi kedudukan energi potensial, dan erat hubungannya dengan perangkap hidrodinamik. Dalam hal ini minyak bumi, baik dalam bentuk tetes – tetes maupun fasa yang menerus yang berada dalam lingkungan air, akan akan selalu mencari batuan reservoir yang terisolir dan secara local mempunyai potensial terendah. Medan potensial dalam suatu reservoir yang terisi air merupakan resultan dari dua gaya, yaitu (1) gaya pelampungan (buoyancy), dan (2) gaya yang disebabkan gradient hidrodinamik. Seperti gambar berikut ini.
Keterangan :
A. Penampang Geologi untuk memperlihatkan terjadinya gradien – hidrodinamik karena permukaan potensiometri.
B. Resultan gaya pelampungan dan gradient hidrodinamik serta bidang ekipotensial minyak yang miring.

Dalam pengertian ini, minyak dan gas bumi akan berakumulasi jika bidang ekipotensial yang tegak lurus terhadap garis gaya resultan gaya tadi menutup seluruhnya dari bawah suatu daerah potensial rendah lokasi yang terisolir, misalnya suatu antiklin, suatu pelengkungan ataupun struktur lainnya dimana lapisan reservoir dan lapisan penyekat diatas konkav kearah bawah.

Dengan konsepsi diatas, maka suatu akumulasi dapat terjadi serta hilang atau terusir, dengan terdapatnya suatu gradient hidrodinamik yang pada setiap saat geologi arah serta besarnya ( vektornya dapat berubah ). Dalam keadaan itu maka paling tidak posisi batas air – minyak atau air – gas itu miring. Akumulasi minyak dan gas bumi merupakan suatu keseimbangan yang dinamis.

2..2 WAKTU PENJEBAKAN
Penentuan waktu dalam sejarah geologi mengenai kapan minyak bumi dapat terjebak, bukan saja penting dari segi ilmiah akan tetapi juga dari segi ekonomi. Suatu perangkap dapat terisi atau kosong tergantung dari waktu pembentukannya ataupun kapan minyak itu terbentuk berada dalam keadaan dapat dijebak oleh perangkap. Pengertian yang baik mengenai hal ini akan sangat membantu evaluasi suatu prospek ( Landes 1959 ). Ada beberapa bukti yang menerangkan bahwa minyak bumi terjebak pada permulaan sejarah pembentukan perangkap misalkan dalam hal lensa-lensa pasir tetapi dapat pula difahami bahwa minyak bumi dapat bermigrasi ke perangkap yang terbentuk kemudian. Perangkap dapat terbentuk lama setelah minyak tidak dapat bermigrasi lagi, sehingga perangkap tersebut akan kosong. Rittenhouse ( 1967) dalam dott dan Reynolds ( 1969 ) memberikan kriteria untuk mengetahui waktu akumulasi. Berbagai metodenya memberikan informasi hal – hal sebagai berikut :
a. Waktu tercepat dimulainya akumulasi.
b. Waktu tercepat dapat terselesaikannya akumulasi.
c. Waktu paling lambat dapat terselesaikannya akumulasi.

Hal – hal tersebut dapat dipertimbangkan dari beberapa faktor sebagai berikut :
1) Waktu Pembentukan Perangkap.
Waktu pembentukan perangkap adalah waktu tercepat minyak dapat berakumulasi. Tetapi tentu minyak dapat bermigrasi setiap waktu setelah pembentukan perangkap tadi. Dalam hal kondisi patahan – tumbuh, akumulasi dapat terjadi bersamaan dengan pembentukan batuan reservoir. Juga hal yang sama berlaku untuk lensa – lensa batuan reservoir.
Cara menentukan ada tidaknya perangkap pada waktu migrasi dan pembentukan minyak bumi yaitu dengan membuat perangkap struktur yang digantungkan pada suatu lapisan sumur tersebut sebagai datum. Dengan cara yang sama suatu peta struktur berkontur dapat dibuat dan ada tidaknya tutupan pada zaman tersebut dapat ditentukan.
2) Perangkap Yang Terisi dan Kosong.
Terdapat kemungkinan perangkap yang terisi dibentuk terlebih dahulu dan perangkap yang kosong terbentuk kemudian, setelah migrasi sekunder berhenti.
3) Expansi Gas.
Hal ini dikemukakan oleh leverson (1956) yang mendasarkannya pada hokum Boyle dan Charles. Gas mengembang jika tekanan turun. Kedalaman (waktu) pada saat volum reservoir sama dengan volum minyak dan gas sekarang pada tekanan dari temperature lebih rendah, adalah kedalaman tercetak (waktu) pada saat akumulasi telah selesai.
4) Minyak dibawah Penjenuhan.
Anggapan dasar dari kriteria ini adalah bahwa minyak telah jenuh dengan gas pada waktu akumulasi telah selesai. Jika terdapat reservoir dengan minyak yang tidak jenuh minyak ( tidak ada tutup/ topi gas ) maka hal ini dapat diterangkan sebagai berikut. Pada pembebanan dan penguburan setelah akumulas, maka minyak dalam reservoir akan tidak jenuh, karena peningkatan tekanan akan melarutkan gas bebas kedalam minyak. Pada pengangkatan dan erosi lapisan yang menutupi reservoir akan terjadi ha sebaliknya dan gas akan keluar membentuk topi gas.Namun metode penentuan ini memiliki banyak kelemahan dan anggapan – anggapannya belum tentu benar.sehingga hasilnya meragukan ( hoshkin, 1960 ).
5) Topi Gas yang Berkelalaian
Hal ini diberikan oleh Levorsen ( 1950 ) untuk keadaan special. Topi gas yang tinggi dalam blok yang turun dalam perangkap patahan menunjukkan akumulasi gas sebelum pematahan.
6) Difusi Gas Dalam Reservoir Yang Sebagian Terpisah dan Tak Jenuh.
( Zafferano, Capps dan Fry, 1963 ). Difusi gas akan terjadi diantara reservoir yang demikian dari yang jenuh menuju yang kurang jenuh dan waktu yang diperlukan untuk hubungan sekarang dapat dihitung.
7) Metoda Energi (oleh para Ilmuwan Uni Soviet ).
Adalah pengukuran kehilangan nilai energi dari minyak dalam reservoir sepanjang waktu.
Mineral Diagenesa
Mineral Diagenesa akan menurunkan porositas karena sementasi dan kompaksi. Jika Minyak bumi yang terdapat menghalang – halangi proses tersebut, maka jelas akumulasi terjadi sebelum diagenesa dalam reservoir basah air yang ada didekatnya. Sering hal ini ditunjukkan oleh tekanan tinggi dalam reservoir.
9) Sementasi Organik
Yang dimaksud sementasi Organik disini terutama adalah semen aspal. Waktu akumulasi adalah sebelum pengorosian bidang ketidakselarasan.

Dari uraian tersebut diatas disimpulkan bahwa minyak bumi tidak terjadi pada waktu tertentu di dalam evolusi minyak bumi. Setalah berakumulasi di suatu perangkap, minyak bumi dapat bermigrasi lagi ke perangkap yang terbentuk kemudian. Sebagai contoh misalnya akumulasi minyak bumi di daerah cepu (Soetantri dan lain-lain, 1973 ). Di daerah ini pelipatan utama dan intensif terjadi pada akhir Pleistosen.
Akan tetapi kedalaman penguburan dari batuan induk yang meliputi struktur itu tidak memungkinkan pembentukan dan migrasi minyak bumi ke struktur muda.

Dilain Pihak suatu fasa pelipatan yang lebih tua telah terjadi pada akhir pliosen dan kemudian pada waktu transgresi pleistosen, penguburan telah cukup dalam untuk pembentukan dan migrasi minyak bumi ke dalam sejumlah perangkap kecil yang telah ada terlebih dahulu. Jadi kombinasi antara kedalaman pembebanan dan umur pelipatan dapat menentukan apakah suatu perangkap itu terisi penuh atau tidak. (Imam J.)


Sumber : www.duniamigas.wordpress.com
Read More..

Rabu, 13 Mei 2009

Metode Geofisika

METODE GEOFISIKA

Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip fisika. Di dalamnya termasuk juga meteorologi, elektrisitas atmosferis dan fisika ionosfer. Penelitian geofisika untuk mengetahui kondisi di bawah permukaan bumi melibatkan pengukuran di atas permukaan bumi dari parameter-parameter fisika yang dimiliki oleh batuan di dalam bumi. Dari pengukuran ini dapat ditafsirkan bagaimana sifat-sifat dan kondisi di bawah permukaan bumi baik itu secara vertikal maupun horisontal.

Dalam skala yang berbeda, metode geofisika dapat diterapkan secara global yaitu untuk menentukan struktur bumi, secara lokal yaitu untuk eksplorasi mineral dan pertambangan termasuk minyak bumi dan dalam skala kecil yaitu untuk aplikasi geoteknik (penentuan pondasi bangunan dll).

Beberapa contoh kajian dari geofisika bumi padat misalnya seismologi yang mempelajari gempabumi, ilmu tentang gunungapi (Gunung Berapi) atau volcanology, geodinamika yang mempelajari dinamika pergerakan lempeng-lempeng di bumi, dan eksplorasi seismik yang digunakan dalam pencarian hidrokarbon.



1. Metode Elektromagnetotelurik

Metode elektromagnetotelurik merupakan metode geofisika yang sangat populer dan sering digunakan dalam survey geologi, rekayasa, dan arkeologi dalam segala variasi. Akan tetapi, analisa data dan pemodelan biasanya dilakukan setelah kembali ke base camp atau laboratorium. Jika data dapat diproses secepat proses akuisisi, maka kita dapat memodifikasi konfigurasi atau distribusi titik pengamatan di lapangan jika diperlukan, sehingga akan lebih menghemat waktu dan biaya. Untuk keperluan tersebut, maka dikembangkan suatu cara transformasi untuk mempercepat proses analisis data, terutama untuk jumlah data yang sangat besar.

Inversi Bostick merupakan teknik yang sederhana dan cepat untuk analisis kurva sounding tahanan jenis semu dan fasa dari data megnetotelurik (MT). Pada metode transformasi tersebut informasi mengenai kedalaman diperoleh dari frekuensi pengukuran atau waktu untuk metoda elektromagnet berdasarkan prinsip skin-depth. Kemudian tahanan jenis semu pengukuran ditransformasikan menjadi tahanan jenis efektif sehingga diperoleh tahanan jenis sebagai fungsi dari kedalaman.
Tugas akhir ini membahas modifikasi transformasi Bostick berdasarkan kajian empiris menggunakan model-model sintesis yang dilakukan Meju (1995). Hal ini dimaksudkan agar diperoleh hasil transformasi berupa tahanan jenis sebagai fungsi dari kedalaman yang lebih realistis. Hasil modifikasi transformasi Bostick diuji menggunakan data magnetotelurik sintesis 1-D dan 2-D. Struktur 2-D dapat diidentifikasi menggunakan inversi data magnetotelurik 1-D selama struktur tersebut tidak terlalu jauh menyimpang dari model 1-D (berlapis horisontal).

2. Metode Geo-radar

Metode Georadar atau disebut juga dengan metoda Elektromagnetik Subsurface Profilling merupakan salah satu metode Geofisika untuk memetakan bawah permukaan yang relatif dangkal. Metoda ini menggunakan prinsip-prinsip gelombang elektromagnetik yang kedalaman penetrasi dan besarnya amplitudo yang terekam sangat tergantung pada sifat kelistrikan dari batuan/media bawah permukaan dan frekuensi peralatan yang digunakan.

Warna penampang vertikal atau citra rekaman georadar tersebut menunjukkan sinyal yang terekam. Warna hitam berarti sinyal yang terekam cukup tinggi, warna putih berarti sinyalnya sangat lemah (tidak ada sinyal). Sedangkan sinyal antaranya ditunjukkan oleh abu-abu (skala abu-abu). Intensitas sinyal ini sebanding juga dengan amplitudo gelombang pantul yang berkaitan dengan kontras konduktivitas.
Untuk menunjang interpretasi secara kualitatif, distribusi harga amplitudo yang berkaitan dengan konduktivitas yang terekam diklasifikasikan dalam bentuk warna dengan menggunakan beberapa perangkat lunak. Hal ini diterapkan untuk kasus sedimen lempung dengan hasil yang cukup memadai.

3. Metode Seismik

Metoda seismik adalah salah satu metoda eksplorasi yang didasarkan pada pengukuran respon gelombang seismik (suara) yang dimasukkan ke dalam tanah dan kemudian direleksikan atau direfraksikan sepanjang perbedaan lapisan tanah atau batas-batas batuan. Sumber seismik umumnya adalah palu godam (sledgehammer) yang dihantamkan pada pelat besi di atas tanah, benda bermassa besar yang dijatuhkan atau ledakan dinamit. Respons yang tertangkap dari tanah diukur dengan sensor yang disebut geofon, yang mengukur pergerakan bumi.

Metode seismik merupakan salah satu bagian dari seismologi eksplorasi yang dikelompokkan dalam metode geofisika aktif, dimana pengukuran dilakukan dengan menggunakan sumber seismic (palu, ledakan, dll). Setelah usikan diberikan, terjadi gerakan gelombang di dalam medium (tanah/batuan) yang memenuhi hukum-hukum elastisitas ke segala arah dan mengalami pemantulan ataupun pembiasan akibat munculnya perbedaan kecepatan. Kemudian, pada suatu jarak tertentu, gerakan partikel tersebut di rekam sebagai fungsi waktu. Berdasar data rekaman inilah dapat diperkirakan bentuk lapisan/struktur di dalam tanah.

Eksperimen seismik aktif pertama kali dilakukan pada tahun 1845 oleh Robert Mallet, yang oleh kebanyakan orang dikenal sebagai bapak seismologi instrumentasi. Mallet mengukur waktu transmisi gelombang seismik, yang dikenal sebagai gelombang permukaan, yang dibangkitkan oleh sebuah ledakan. Mallet meletakkan sebuah wadah kecil berisi merkuri pada beberapa jarak dari sumber ledakan dan mencatat waktu yang diperlukan oleh merkuri untuk be-riak. Pada tahun 1909, Andrija Mohorovicic menggunakan waktu jalar dari sumber gempa bumi untuk eksperimennya dan menemukan keberadaan bidang batas antara mantel dan kerak bumi yang sekarang disebut sebagai Moho.

Pemakaian awal observasi seismik untuk eksplorasi minyak dan mineral dimulai pada tahun 1920an. Teknik seismik refraksi digunakan secara intensif di Iran untuk membatasi struktur yang mengandung minyak. Tetapi, sekarang seismik refleksi merupakan metode terbaik yang digunakan di dalam eksplorasi minyak bumi. Metode ini pertama kali didemonstrasikan di Oklahoma pada tahun 1921.

Macam metoda seismik

Terdapat dua macam metoda dasar seismik yang sering digunakan, yaitu seismik refraksi dan seismik refleksi.

1. Seismik refraksi (bias)

Metoda seismik refraksi mengukur gelombang datang yang dipantulkan sepanjang formasi geologi di bawah permukaan tanah. Peristiwa refraksi umumnya terjadi pada muka air tanah dan bagian paling atas formasi bantalan batuan cadas. Grafik waktu datang gelombang pertama seismik pada masing-masing geofon memberikan informasi mengenai kedalaman dan lokasi dari horison-horison geologi ini. Informasi ini kemudian digambarkan dalam suatu penampang silang untuk menunjukkan kedalaman dari muka air tanah dan lapisan pertama dari bantalan batuan cadas.

Seismik bias dihitung berdasarkan waktu jalar gelombang pada tanah/batuan dari posisi sumber ke penerima pada berbagai jarak tertentu. Pada metode ini, gelombang yang terjadi setelah usikan pertama (first break) diabaikan, sehingga sebenarnya hanya data first break saja yang dibutuhkan. Parameter jarak (offset) dan waktu jalar dihubungkan oleh sepat rambat gelombang dalam medium. Kecepatan tersebut dikontrol oleh sekelompok konstanta fisis yang ada di dalam material dan dikenal sebagai parameter elastisitas.

2. Seismik refleksi

Metoda seismik refleksi mengukur waktu yang diperlukan suatu impuls suara untuk melaju dari sumber suara, terpantul oleh batas-batas formasi geologi, dan kembali ke permukaan tanah pada suatu geophone. Refleksi dari suatu horison geologi mirip dengan gema pada suatu muka tebing atau jurang.Metoda seismic repleksi banyak dimanfaatkan untuk keperluan Explorasi perminyakan, penetuan sumber gempa ataupun mendeteksi struktur lapisan tanah.

Seismic refleksi hanya mengamati gelombang pantul yang datang dari batas-batas formasi geologi. Gelombang pantul ini dapat dibagi atas beberapa jenis gelombang yakni: Gelombang-P, Gelombang-S, Gelombang Stoneley, dan Gelombang Love.

Sedangkan dalam seismik pantul, analisis dikonsentrasikan pada energi yang diterima setelah getaran awal diterapkan. Secara umum, sinyal yang dicari adalah gelombang-gelombang yang terpantulkan dari semua interface antar lapisan di bawah permukaan. Analisis yang dipergunakan dapat disamakan dengan echo sounding pada teknologi bawah air, kapal, dan sistem radar. Informasi tentang medium juga dapat diekstrak dari bentuk dan amplitudo gelombang pantul yang direkam. Struktur bawah permukaan dapat cukup kompleks, tetapi analisis yang dilakukan masih sama dengan seismik bias, yaitu analisis berdasar kontras parameter elastisitas medium.


Perbandingan metode seismik dengan metode geofisika lainnya

Keunggulan :

1.Dapat mendeteksi variasi baik lateral maupun kedalaman dalam parameter fisis yang relevan, yaitu kecepatan seismik.
2.Dapat menghasilkan citra kenampakan struktur di bawah permukan

3.Dapat dipergunakan untuk membatasi kenampakan stratigrafi dan beberapa kenampakan pengendapan.

4.Respon pada penjalaran gelombang seismik bergantung dari densitas batuan dan konstanta elastisitas lainnya. Sehingga, setiap perubahan konstanta tersebut (porositas, permeabilitas, kompaksi, dll) pada prinsipnya dapat diketahui dari metode seismik.
5.Memungkinkan untuk deteksi langsung terhadap keberadaan hidrokarbon

Kelemahan :

1.Banyaknya data yang dikumpulkan dalam sebuah survei akan sangat besar jika diinginkan data yang baik
2.Perolehan data sangat mahal baik akuisisi dan logistik dibandingkan dengan metode geofisika lainnya.
3.Reduksi dan prosesing membutuhkan banyak waktu, membutuhkan komputer mahal dan ahli-ahli yang banyak.
4.Peralatan yang diperlukan dalam akuisisi umumnya lebih mahal dari metode geofisika lainnya.
5.Deteksi langsung terhadap kontaminan, misalnya pembuangan limbah, tidak dapat dilakukan.


Read More..

Minggu, 10 Mei 2009

Macam-macam Scale

Komposisi scale pada lapangan minyak secara umum biasanya terdiri dari :

1. Calcium carbonate, CaCO3.
2. Calcium sulfate, CaSO4.

Jenis scale lainnya adalah (NaCl) atau garam, Gypsum atau (CaSO4.2H2O), dan stronsium sulfate (SrSO4, FeCO3), namun keberadaan scale jenis ini jarang di Indonesia, BaSO4 dan CaSO4 hanya mungkin terjadi kalau produksi di commingle dari dua zona atau lebih. Untuk scale CaSO4 biasanya tidak terjadi di sumur melainkan di boiler atau heater treater, sedangkan CaCO3 akan larut diasam karena scale ini cepat diendapkan dan mudah dihilangkan dengan asam. Tetapi untuk jenis scale yang lambat terjadinya biasanya padat dan sukar sekali dihilangkan dengan asam walaupun bisa larut. CaSO4 misalnya, harus diubah dengan gypsum converter menjadi CaCO3 atau Ca(OH)2 sebelum bisa dilarutkan oleh air garam atau asam. BaSO4 tidak akan larut di asam HCl karena scale ini jenis nya sangat padat dan keras.


1. Scale Kalsium Karbonat (CaCO3)

Scale kalsium karbonat dibentuk oleh kombinasi ion kalsium dengan ion-ion karbonat atau bikarbonat yang terdapat di dalam air formasi. Persamaan reaksinya dijabarkan sebagai berikut :

Ca++ + CO3= ↔ CaCO3
Ca2+ + 2(HCO3-) ↔ CaCO3 + CO2 + H2O

Ion bikarbonat terdapat dalam air sebagai akibat adanya gas CO2 yang bereaksi dengan air, reaksi tersebut adalah sebagai berikut :

CO2 + H2O ↔ H2CO3
H2CO3 ↔ H+ + 2(HCO3-)
HCO3- ↔ H+ + HCO3-



Pada mulanya, scale berupa partikel-partikel koloid, tetapi karena partikel-partikel ini mempunyai sifat absorbsi, ditambah permukaan batuan formasi dan peralatan produksi yang umumnya kasar, maka melalui proses yang panjang partikel-partikel koloid ini melekat pada batuan formasi dan permukaan peralatan produksi hingga akhirnya membentuk kerak.

Faktor-faktor yang mempengaruhi pembentukan scale CaCO3, yaitu:

a. Temperatur

Makin tinggi temperatur air, kecenderungan pembentukan scale CaCO3 meningkat. Walaupun pada permukaan tidak terbentuk scale, namun dengan suhu yang tinggi pada dasar sumur, maka dapat diprediksi akan ada scale yang terbentuk. Kelarutan CaCO3 berbeda dari kebanyakan zat-zat lain, dimana kelarutannya akan menurun seiring dengan naiknya temperatur.

Perubahan temperatur menyebabkan perubahan mobilitas ion-ion dalam larutan dimana semakin tinggi temperaturnya, maka semakin tinggi pula mobilitas ion-ion tersebut, sehingga kemungkinan terjadinya interaksi antara ion Ca2+ dan HCO3- akan semakin besar pula. Hal ini berarti, semakin tinggi temperatur maka kecenderungan terbentuknya endapan CaCO3 semakin meningkat pula atau mengindikasikan semakin rendahnya harga kelarutan CaCO3.

b. Perubahan tekanan

Banyaknya CO2 yang terlarut dalam air tergantung pada tekanan parsialnya, yaitu apabila tekanan partial tinggi gas CO2 yang terlarut juga meningkat. Dengan demikian apabila jumlah CO2 meningkat persamaan reaksi akan bergeser ke kiri dan kelarutan CaCO3 akan meningkat, dengan perkataan lain jumlan scale CaCO3 berkurang. Sebaliknya apabila terjadi penurunan tekanan, seperti yang terjadi pada aliran fluida dalam tubing, CO2 akan keluar dari cairan/air formasi, dan mengakibatkan reaksi bergeser ke kanan dan scale CaCO3 akan terbentuk. Pada lapangan minyak, CaCO3 adalah yang paling umum terjadi. Hal ini adalah karena terlepasnya gas CO2 dari bicarbonate HCO3- (lingkungan asam, pH <7).
Bila CO2 terlepas dari larutan maka pH akan naik, dan kelarutan Karbonat menurun, sehingga bicarbonarte akan diubah ke calsium carbonate yang kurang terlarut, yaitu CaCO3. Sebagai contoh, kehilangan 100mg bicarbonate/liter, air bisa mengendapkan 28,6 lb calcium carbonate per 1000 bbl air.

Pengendapan scale juga tergantung dari adanya ion calcium yang biasanya dari CaCl2, selain alkalinity airnya (konsentrasi HCO3), temperatur, total konsentrasi garam, waktu kontak dan tingkat agitasi. Gambar 5 memperlihatkan efek temperatur terhadap kelarutan calcium carbonate, barium sulfat, dan stronsium sulfat.

c. Pengaruh garam terlarut

Semakin bertambahnya kadar garam di dalam air (sampai dengan 20%), maka akan menyebabkan kelarutan CaCO3 akan bertambah. Dengan demikian kemungkinan pembentukan scale CaCO3 akan berkurang dengan penambahan garam terlarut. Contoh nya kelrutan CaCO3 pada fresh water adalah 100 mg/l, namn kelarutan pada 20% NaCl adalah 250 mg/l.

2. Scale Kalsium Sulfat (CaSO4)

Umumnya scale kalsium sulfat yang ditemui di lapangan berupa gypsum (CaSO4.2H2O). Gypsum adalah senyawa yang stabil pada temperatur kurang dari 40¬oC dan tekanan atmosfer. Diatas temperatur tersebut, akan terbentuk endapan CaSO4 (Anhidrit) dan pada kondisi tertentu hemi-hydrate (CaSO4.½H2O) akan terendapkan. Scale kalsium sulfat terbentuk dari reaksi berikut :
Ca2+ + SO42- → CaSO4

Faktor-faktor yang mempengaruhi pembentukan scale CaSO4, yaitu:

a. Temperatur

Kelarutan gypsum (CaSO4.2H2O) akan meningkat seiring dengan meningkatnya temperatur hingga mencapai 100oF, namun setelah melewati suhu tersebut kelarutanya akan menurun.

b. Tekanan

Kelarutan CaSO4 dalam air meningkat dengan kenaikan tekanan. Dengan demikian adanya penurunan tekanan, seperti yang terjadi di sumur produksi, merupakan penyebab utama terbentuknya scale CaSO4. Pengurangan tekanan menyebabkan kelarutan menurun dan scale terjadi, selain itu adanya comingle completion menyebabkan pencampuran air antara yang kaya akan Ca dan yang lain kaya akan SO4 menyebabkan terbentuknya scale.
Read More..

Sabtu, 09 Mei 2009

Scale

1. Scale

Air formasi mengandung bermacam-macam bahan kimia dalam bentuk ion-ion yang larut berupa anion dan kation yang bergabung satu sama lain membentuk suatu senyawa yang tidak dapat larut dalam air. Apabila jumlah senyawa organik tersebut cukup banyak hingga melampaui batas kelarutannya, maka senyawa tersebut akan mengendap dalam bentuk padatan yang disebut scale. Scale yang berupa endapan kimiawi ini dapat terbentuk di tanki, water treatment, separator, flowline, tubing, dan perforasi. Setiap sumur migas selalu terbentuk scale, sehingga akan menurunkan laju produksi akibat tubing dan flowline tersumbat atau juga pori-pori formasi tersumbat oleh pasir yang jatuh kembali selama proses produksi. Keberadaan scale ini harus dapat diminimalisir agar laju produksi tetap dapat dipertahankan.

1.1. Penyebab Terjadinya Scale

Beberapa hal yang umumnya menyebabkan terbentuknya scale, antara lain adalah penurunan tekanan, perubahan temperatur, pencampuran antara dua zat cair (air) atau kalau kelarutan suatu zat terlewati. Selain itu perubahan pH, evaporasi (merubah konsentrasi), waktu kontak juga akan sangat memepengaruhi.


Selengkapnya download di sini
Read More..

Enhance Oil Recovery (EOR)

1. Klasifikasi Produksi Hidrokarbon

Produksi awal hidrokarbon dari reservoir yang terletak di bawah tanah dilakukan dengan menggunakan energi pendorong alami dari reservoir. Jenis produksi ini diklasifikasikan sebagai produksi primer. Sumber energi pendorong alami yang terdapat pada reservoir berasal dari pembesaran volume fluida reservoir, pelepasan solution gas seiring dengan menurunnya tekanan, tekanan dari aquifer sekitar yang berhubungan, dan tekanan dari gaya gravitasi. Ketika energi pendorong alami sudah menjadi semakin kurang, sangatlah diperlukan untuk membantu meningkatkan tekanan dengan sumber eksternal (bukan dari energi pendorong dari dalam reservoir). Penambahan energi ini biasanya dicapai dengan injeksi fluida (gas alam atau air) ke dalam reservoir. Penggunaan metode injeksi ini diklasifikasikan sebagai produksi sekunder. Tujuan utama dari proses ini adalah untuk mempertahankan reservoir dalam keadaan bertekanan tinggi.
Produksi tersier dilakukan bila peningkatan energi pendorong secara eksternal pada produksi sekunder tidak bisa diaplikasikan, dikarenakan nilai recovery terlalu kecil. Hal ini bisa disebabkan oleh berbagai macam hal, misalnya sweep efficiency (efisiensi gerak fluida ketika melintasi suatu permukaan) yang rendah sehingga injeksi air menjadi tidak efisien. Pada produksi tersier dikenal metode EOR (Enhance Oil Recovery). Metode ini kemudian menjadi populer karena peningkatan produksi dengan metode ini cukup tinggi dan efektif.

2. EOR (Enhance Oil Recovery)

Pada produksi sekunder dilakukan pendesakan dengan air dan gas melalui sumur injeksi untuk mempertahankan tekanan dalam reservoir. Tapi seringkali air dan gas yang dimasukkan melalui sumur injeksi tidak memberikan tekanan yang cukup untuk mendorong minyak keluar. Hal ini disebabkan oleh sweep efficiency yang rendah. Permukaan batuan yang heterogen (memiliki rekahan, patahan, dan permukaan batuan dengan permeabilitas tinggi) menyebabkan aliran air dan gas yang masuk menjadi teralih ke tempat lain yang bukan merupakan zona yang mengandung minyak. Hal ini menyebabkan aliran air dan gas yang menuju zona minyak seolah-olah berkurang mobilitasnya.


Selengkapnya download di sini
Read More..

Rabu, 06 Mei 2009

Oil and Gas Traps (Perangkap Minyak dan Gas)

Dalam Sistem Perminyakan, memiliki konsep dasar berupa distribusi hidrokarbon didalam kerak bumi dari batuan sumber (source rock) ke batuan reservoar. Salah satu elemen dari Sistem Perminyakan ini adalah adanya batuan reservoar, dalam batuan reservoar ini, terdapat beberapa faktor penting diantaranya adalah adanya perangkap minyak bumi.

Perangkap minyak bumi sendiri merupakan tempat terkumpulnya minyak bumi yang berupa perangkap dan mempunyai bentuk konkav ke bawah sehingga minyak dan gas bumi dapat terjebak di dalamnya.

Perangkap minyak bumi ini sendiri terbagi menjadi Perangkap Stratigrafi, Perangkap Struktural, Perangkap Kombinasi Stratigrafi-Struktur dan perangkap hidrodinamik.

1. Perangkap Stratigrafi

Jenis perangkap stratigrafi dipengaruhi oleh variasi perlapisan secara vertikal dan lateral, perubahan facies batuan dan ketidakselarasan dan variasi lateral dalam litologi pada suatu lapisan reservoar dalam perpindahan minyak bumi. Prinsip dalam perangkap stratigrafi adalah minyak dan gas bumi terperangkap dalam perjalanan ke atas kemudian terhalang dari segala arah terutama dari bagian atas dan pinggir, hal ini dikarenakan batuan reservoar telah menghilang atau berubah fasies menjadi batu lain sehingga merupakan penghalang permeabilitas (Koesoemadinata, 1980, dengan modifikasinya). Dan jebakan stratigrafi tidak berasosiasi dengan ketidakselarasan seperti Channels, Barrier Bar, dan Reef, namun berasosiasi dengan ketidakselarasan seperti Onlap Pinchouts, dan Truncations.



Pada perangkap stratigrafi ini, berasal dari lapisan reservoar tersebut, atau ketika terjadi perubahan permeabilitas pada lapisan reservoar itu sendiri. Pada salah satu tipe jebakan stratigrafi, pada horizontal, lapisan impermeabel memotong lapisan yang bengkok pada batuan yang memiliki kandungan minyak. Terkadang terpotong pada lapisan yang tidak dapat ditembus, atau Pinches, pada formasi yang memiliki kandungan minyak. Pada perangkap stratigrafi yang lain berupa Lens-shaped. Pada perangkap ini, lapisan yang tidak dapat ditembus ini mengelilingi batuan yang memiliki kandungan hidrokarbon. Pada tipe yang lain, terjadi perubahan permeabilitas dan porositas pada reservoar itu sendiri. Pada reservoar yang telah mencapai puncaknya yang tidak sarang dan impermeabel, yang dimana pada bagian bawahnya sarang dan permeabel serta terdapat hidrokarbon.

Pada bagian yang lain menerangkan bahwa minyak bumi terperangkap pada reservoar itu sendiri yang Cut Off up-dip, dan mencegah migrasi lanjutan, sehingga tidak adanya pengatur struktur yang dibutuhkan. Variasi ukuran dan bentuk perangkap yang demikian mahabesar, untuk memperpanjang pantulan lingkungan pembatas pada batuan reservoar terendapkan.








2. Perangkap Struktural

Jenis perangkap selanjutnya adalah perangkap struktural, perangkap ini Jebakan tipe struktural ini banyak dipengaruhi oleh kejadian deformasi perlapisan dengan terbentuknya struktur lipatan dan patahan yang merupakan respon dari kejadian tektonik dan merupakan perangkap yang paling asli dan perangkap yang paling penting, pada bagian ini berbagai unsur perangkap yang membentuk lapisan penyekat dan lapisan reservoar sehingga dapat menangkap minyak, disebabkan oleh gejala tektonik atau struktur seperti pelipatan dan patahan (Koesoemadinata, 1980, dengan modifikasinya).

a. Jebakan Patahan

Jebakan patahan merupakan patahan yang terhenti pada lapisan batuan. Jebakan ini terjadi bersama dalam sebuah formasi dalam bagian patahan yang bergerak, kemudian gerakan pada formasi ini berhenti dan pada saat yang bersamaan minyak bumi mengalami migrasi dan terjebak pada daerah patahan tersebut, lalu sering kali pada formasi yang impermeabel yang pada satu sisinya berhadapan dengan pergerakan patahan yang bersifat sarang dan formasi yang permeabel pada sisi yang lain. Kemudian, minyak bumi bermigrasi pada formasi yang sarang dan permeabel. Minyak dan gas disini sudah terperangkap karena lapisan tidak dapat ditembus pada daerah jebakan patahan ini.



b. Jebakan Antiklin

Kemudian, pada jebakan struktural selanjutnya, yaitu jebakan antiklin, jebakan yang antiklinnya melipat ke atas pada lapisan batuan, yang memiliki bentuk menyerupai kubah pada bangunan. Minyak dan gas bumi bermigrasi pada lipatan yang sarang dan pada lapisan yang permeabel, serta naik pada puncak lipatan. Disini, minyak dan gas sudah terjebak karena lapisan yang diatasnya merupakan batuan impermeabel.



c. Jebakan Struktural lainnya

Contoh dari perangkap struktur yang lain adalah Tilted fault blocks in an extensional regime, marupakan jebakan yang bearasal dari Seal yang berada diatas Mudstone dan memotong patahan yang sejajar Mudstone. Kemudian, Rollover anticline on thrust, adalah jebakan yang minyak bumi berada pada Hanging Wall dan Footwall. Lalu, Seal yang posisinya lateral pada diapir dan menutup rapat jebakan yang berada diatasnya.



3. Perangkap Kombinasi

Kemudian perangkap yang selanjutnya adalah perangkap kombinasi antara struktural dan stratigrafi. Dimana pada perangkap jenis ini merupakan faktor bersama dalam membatasi bergeraknya atau menjebak minyak bumi. Dan, pada jenis perangkap ini, terdapat leboh dari satu jenis perangkap yang membenuk reservoar. Sebagai contohnya antiklin patahan, terbentuk ketika patahan memotong tegak lurus pada antiklin. Dan, pada perangkap ini kedua perangkapnya tidak saling mengendalikan perangkap itu sendiri




4. Perangkap Hidrodinamik

Kemudian perangkap yang terakhir adalah perangkap hidrodinamik. Perangkap ini sangta jarang karena dipengaruhi oleh pergerakan air. Pergerakan air ini yang mampu merubah ukuran pada akumulasi minyak bumi atau dimana jebakan minyak bumi yang pada lokasi tersebut dapat menyebabkan perpindahan. Kemudian perangkap ini digambarkan pergerakan air yang biasanya dari iar hujan, masuk kedalam reservoar formasi, dan minyak bumi bermigrasi ke reservoar dan bertemu untuk migrasi ke atas menuju permukaan melalui permukaan air. Kemudian tergantung pada keseimbangan berat jenis minyak, dan dapat menemukan sendiri, dan tidak dapat bergerak ke reservoar permukaan karena tidak ada jebakan minyak yang konvensional.


Read More..

Selasa, 05 Mei 2009

Annual IPA (Indonesian Petroleum Association) Convention

Mengundang seluruh alumni Teknik Pertambangan Unsri dan yang terkait untuk dapat menyaksikan stan kami : 'PETRODRILL MANUFACTURE INDONESIA UNTUK PIONEER PRODUKSI POMPA PRODUKSI DALAM NEGERI UNTUK MIGAS DAN MINING' buah karya Alumni Teknik Pertambangan UNSRI Nasrun Jauhari dan JOHNNY HANDOYO pada Annual IPA (INdonesian Petroleum Association) Convention, JHCC pada 5-7 MEI 2009.


Read More..